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Abstract
We consider classical two-dimensional (2D) Coulomb clusters consisting of two species
containing five particles with charge q1 and five with charge q2, respectively. Using Monte Carlo
and molecular dynamics (MD) simulations, we investigated the ground state configurations as
well as radial and angular displacements of particles as a function of temperature and their
dependence on the ratio q = q2/q1. We found new configurations and a new multi-step melting
behavior for q sufficiently different from the uniform charge limit q = 1.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Coulomb clusters, made out of point charged particles confined
by a parabolic potential, are of general interest not only
for classical but also for quantum systems. The ground
state configuration and melting of such systems have been
widely studied [1–8]. The model system of 2D confined
clusters of classical particles, known also as a classical Wigner
molecule, is the classical analog of the well known quantum
dot problem [9]. It closely describes quantum dots in the weak
density limit and/or in the high magnetic field limit [11, 12],
where the kinetic energy of the electrons is quenched. In a
finite system there is a competition between the bulk triangular
lattice and the circular confinement potential that tries to force
the particles into a ring-like configuration [13]. These quantum
dots (called also artificial atoms) are atom-like structures that
have interesting optical properties and may be of interest for
single-electron devices [9], they can serve as hosts for storing
quantum information, i.e. qubits, because of their atom-like
properties [14]. When one increases the ratio between the
average kinetic energy and the average potential energy the
system will lose its order and it will melt. For the classical
system this is done by increasing temperature or by decreasing

4 Author to whom any correspondence should be addressed.

the density, i.e. increasing the average distance between the
particles. At T = 0 the classical system will always be in
the ordered state. This is different from the quantum analog
where one can increase the quantum fluctuations by increasing
the density of the particles, resulting in quantum melting.
This regime was studied in [10] using the path integral Monte
Carlo (MC) method which was extended in [11] to non-zero
temperatures.

The model system itself was introduced for the first time
by Thomson [15] as a classical model for the atom, where a
small number of electrons are placed in a uniform neutralizing
ion background, generating the parabolic confining potential.
For a small number of equally charged particles (up to N = 50)
such systems form concentric shells [1–3, 9, 16]. For magic
configurations these shells consist of a few subshells [8] with
slightly different radii. The radial order in such shells is
maintained until angular order between different shells is lost.
In non-magic configurations, the fine structure in a shell is lost
at very low temperatures while radial order persists up to much
higher temperatures. In a very large system, the radial and the
intrashell angular order of all the shells disappear at the same
temperature.

In the present paper we investigate a binary system and
study in detail how the inequality of the two types of particles
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influences the ground and metastable states and the melting of
the cluster. Because of the increased parameter space, we limit
ourselves to a cluster consisting of ten particles with an equal
number (i.e. five) of particles with two different charges. We
find the ground state configurations for varying ratio q = q2/q1

and determine the new melting scenario in the region 0 � q �
5 in the particular case N1 = N2 = 5.

Non-uniform systems of charged particles containing a
small number of defects have been studied recently [5, 17, 18].
As to binary systems [12, 19], previous studies focused on
the case of N1 �= N2. Detailed MC simulations of the case
N = 13 (N1 = 7, N2 = 6) show that the intrashell melting
temperature Tα1 (figure 3 in [19]) is lower than the radial
melting temperature Tr for the internal shell in the region
0.1 � q � 0.5 and increases monotonically with q . For
q ≈ 1 (figures 10 and 11 in [19]) a similar behavior is
revealed for the radial Tr and the angular intershell melting
temperature Tα2. However, the q dependence is not monotonic.
Tr reaches a maximum, while Tα2 a minimum for q → 1. For
q = 3 (figure 1 in [19]) the intershell melting temperature
Tα2 is also the lowest one (corresponding to the mean square
displacements equal to 0.1). The radial and intrashell melting
temperature Tr and Tα1 for the internal shell are roughly the
same.

In fact, this scenario holds for q > 1.9 (figure 2(b)
in [19]). For both N = 13 and 25 and particles with equal
masses, the radial melting temperature of inner shell(s) is lower
than that for the outer shell (particles with a smaller charge melt
first).

For the binary system consisting of 10 particles (with
N1 = N2), a perfect ring-like structure was found in [12]
(their figure 2(a)). It appears in the ground state for q � 0.5
and q � 2.0, while in the region 0.5 < q < 2.0 there are
deformations.

The non-uniform system with Ns particles carrying the
charge q1 = 1 and Nd carrying the charge q2 = 2 has been
analyzed by Drocco et al [5]. In this study the charges were
fixed and the number of particles was changed. They found
that the outer shell is formed by doubly charged particles and
the highest melting temperature corresponds to Ns = Nd + 1.

In the present paper we extend previous work on finite size
binary systems to a larger range of q-values; we also obtain the
metastable states and investigate the different melting regimes.
This paper is organized as follows. In section 2 we introduce
the model system and the algorithm used. The numerical
results on the ground and metastable states of the melting
of our system are studied in section 3. Our results are also
summarized in section 3.

2. The model and MD simulations

Our system consists of N = 10 non-equally charged particles,
which interact through a repulsive Coulomb potential and
move in two dimensions (2D). N1 = 5 particles carry a charge
q1 and N2 = 5 particles carry a charge q2. We define q1 = 1
and q2 = q = q2/q1. The system is held together by
the confining parabolic potential V (r) and the total potential

energy is given by

U =
N=10∑

i=1

(
V (ri ) + qi

e

N=10∑

j=i+1

q j

|ri − r j |

)
,

where V (r) = 1
2 mωo

2r 2.
The potential energy can be written in a reduced form (in

dimensionless units) as

U =
N∑

i=1

(
ri

2 +
N∑

j=i+1

qi q j

|ri − r j |

)
, (1)

where we introduced the notation [2]:

ro = (2q1q2/ε)
1/3α−1/3, Eo = (q1q2/2ε)2/3α1/3,

To = (q1q2/2ε)2/3α1/3 k−1
B , with α = mωo

2,

where ωo is the vibration frequency of a single particle in
the parabolic confinement potential, m is the mass of the
particle, q is the relative particle charge and ε is the static
dielectric constant of the medium in which the particles are
moving.

The stable configurations of the particles in our systems
are found by using a MC simulation technique applying
the Metropolis algorithm [20] together with a Newtonian
optimization technique (which improves the accuracy of the
MC method). A more detailed description of it can be
found in [3]. In that method the particles are initially
thrown in random positions within some circular area (in the
confining potential) and than allowed to reach a steady state
configuration. To reach the ground state we use 103 MC
steps during which all the particles are randomly displaced.
If the new configuration has a smaller energy than the old
configuration the displacement is accepted. If the new energy
is larger than that corresponding to the old configuration the
displacement is accepted with probability δ < exp(−�E/T ),
where δ is a random number between 0 and 1 and �E is
the increment in the energy [21]. The whole procedure is
repeated many times for different starting random positions
and in this way we are able to obtain both the ground state
and the different metastable states.

To study the system at finite temperature, we have
followed the MD simulation method [8], referring to the Verlet
time integration algorithm [22] and its modified version known
as the ‘Velocity form’ [23, 24] of the Verlet algorithm. In
MD simulation, the results of the measurement of a physical
quantity (such as temperature or kinetic or potential energy) are
obtained as averages of instantaneous values calculated during
the MD run. We have performed MD runs up to 5 × 106 steps
with a time step size of �t = 0.001.

In two-step MD algorithms, as applied in our study, the
third order Taylor expansion for the positions r is written (t)
(one forward, one backward in time) [25]. Here the positions
r, velocities v and accelerations a at time t + �t are obtained
from those at time t using the following equations:

r(t + �t) = r(t) + v(t)�t + 1
2 a(t)�t2

2
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v
(

t + �t

2

)
= v(t) + 1

2
a(t)�t

a(t + �t) = − 1

m
∇V (r(t + �t))

v(t + �t) = v
(

t + �t

2

)
+ 1

2
a(t + �t)�t

where �t is the time step.
As previously [8], starting from the ground state

configuration and at T = 0, the required temperature of
the system To was reached in 103 MD steps, rescaling the
velocities in the expression for v(t + �t

2 ) so that:

v
(

t + �t

2

)
=

√
To

T (t)
v(t) + 1

2
a(t)�t

where T (t) is the so-called ‘instantaneous temperature’.
Next, in the other 103 steps, the system was relaxed. In the

final 5 × 106 MD steps the average energies were calculated
together with the mean squared displacements.

The loss of order in our 2D Coulomb clusters is
investigated through the study of the radial and angular
displacement method introduced before [2, 8]. By measuring
the mean square displacements (msd) as a function of
temperature we can distinguish between the solid and liquid
state on the basis of the Lindemann criterion [8]. According
to this criterion, if the msd exceed a value of 0.1 then radial or
angular melting of the whole system or a given shell appears.
We note that in the analysis of Drocco et al [5] the mean radial
distance of the inner singly charged particles from their initial
T = 0 position is considered and the melting temperature
is defined in a slightly different way. They introduced two
melting temperatures: the exchange and rotation temperature
and defined the lower one as the melting temperature.

The radial mean square displacement (msd(T )) is defined
by

〈u2
R〉 = 1

Nsa2

Ns∑

i=1

[〈ri 〉2 − 〈r 2
i 〉],

where a = 2R√
Ns

is the average distance between particles, R
is the radius of the system and summation is over all particles
belonging to a given shell. The symbol 〈 〉 stands for an average
over the total number of MD steps (after equilibrating the
system).

To characterize the angular behavior of the system the
intra- and intershell angular mean square deviations can be
calculated in order to describe the angular motion of the
particles. The angular intrashell square deviation is defined as

〈u2
α〉 = 1

Ns

Ns∑

i=1

[〈(ϕi − ϕi1)
2〉 − 〈ϕi − ϕi1〉2]/(ϕ(s)

o )2

and the angular intershell square deviation is defined as

〈u2
β 〉 = 1

Ns

Ns∑

i=1

[〈(ϕi − ϕi2)
2〉 − 〈ϕi − ϕi2〉2]/(ϕ(s)

o )2

where i1 is the nearest particle from the same shell, i2 is the
nearest particle from the nearest neighbor shell, ϕo = 2π

Ns
and

Ns is the number of particles in a shell.

3. Results

We have investigated systems consisting of N = 10 particles
as a function of the parameter q = 0.1, 0.4, 0.8, 1, 1.5, 2, 3, 5.
The ground state configurations of non-equally charged
particles have been found by using the MC algorithm of
Bedanov et al [2] and Kong et al [9]. The particles arrange
themselves in concentric rings as seen in figure 1. The black
filled circles correspond to particles with charge q1 = 1
and the open red circles to those with charge q2 = q .
The particles carrying larger charge are pushed to peripheral
rings to minimize the repulsion, which agrees with previous
observations [5, 12].

However, we see that the ring structure changes with q .
The structural data on the configuration for the ground and
for the metastable states are presented in table 1 for different
values of q . For q �= 1 we found that the outer ring always
has five particles, both for the ground state and all metastable
states. The values of energy per particle E/N and also the
differences in energy between the metastable state and the
ground state �E/N are given. Notice that the number of
metastable states depends sensitively on q .

For q = 1 we recover the known structure [9] (2, 8), but
for q � 2 or q � 0.4, we find (5, 5) partitioning, which is
consistent with that in figures 1(a)–(d) and 2(a) of Ferreira et al
[12]. In this case, there is a clear separation in shells between
the two types of particles. We can also distinguish the (3, 7)
and (3, 2, 5) structures, as far as intermediate values of q are
concerned. For q = 0.8 and 1.5 we have three rings. With
increasing q , the radius of the rings increases.

The region near q = 1 was considered in [12] for N = 10
and 13. In this case (figures 2 and 3 in [12]) a structural
discontinuity was observed. In figure 3 in [12] a structural
phase transition can be distinguished for q = 1, as there are
discontinuities in the derivatives of the energy with respect to
q . Here we analyze only the melting for q = 1 and q much
different from 1.

For different q the rings have different widths (given in
table 1). In figure 2 we present the q dependent widths of rings
for the ground states. For q � 0.4 and q � 3.0 there are perfect
rings (both inner and outer ones) and we can observe magic
configurations (5, 5). For metastable states we can distinguish
mostly the (3, 2, 5) structures in the range of q 0.8 � q � 2.0
except q = 1, and for q < 0.8 or q > 2.0 we found the
configuration with one particle in the middle (1, 4, 5), (1, 3,
1, 5).

The results for melting properties of our system are
summarized in figures 3 and 4. We took the following
convention: TR indicates radial melting temperature and Tα

and Tβ indicate the angular intrashell and intershell melting
temperatures, respectively. They represent the temperatures at
which the msd 〈u2

R〉, 〈u2
α〉 and 〈u2

β〉 exceed the value of 0.1.
In order to simplify the plots in the case of q = 0.8 and 1.5,
TR1 and Tα1 describe the melting temperatures of the inner two
rings for which those values are the same (see also table 2).

Table 2 summarizes the results shown in figures 2 and 3
and presents a sequence of melting steps for different q s. In
addition in table 3 we present for a specific q-value, i.e. q = 3,

3
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Figure 1. Ground state configurations of the 10-particle system for q = 0.1, 0.4, 0.8, 1, 1.5, 2, 3, 5. The filled circles represent particles with
charge equal to 1 and the open circles denote the particles with different charge q.

Figure 2. Width of the rings versus q for the ground state. The
widths are marked as follows: filled red circles refer to the width of
the inner ring, filled green squares refer to width of the outer ring,
and blue open squares refer to width of the middle ring.

the numerical values for the different radial and angular intra-
and intershell variations for different temperatures. The bold
results are for those were melting occurs.

Figure 3 presents the radial, intra- and intershell melting
temperatures of the rings for q = 0.1–5.0. In figure 4
we present the angular intershell temperatures and angular
intrashell temperatures of inner rings in more detail.

Except for q = 0.8 and 1.5, first intershell rotation occurs
and melting of the system is accomplished with intrashell
melting of the outer ring. For q = 0.8 and 1.5 first the
radial melting of both inner rings is observed. Similar behavior

Figure 3. Radial and angular intrashell melting temperatures
(according to the Lindemann criterion) of both rings versus the ratio
q between the charges. The temperatures are marked as follows:
filled red circles (TR1 ) represent radial displacements for the inner
rings; half-filled red circles (TR2 ) represent radial displacements for
the outer ring; filled green triangles (Tα1) are angular intrashell
displacements for the inner rings; half-filled green triangles (Tα2) are
angular intrashell displacements for the outer ring; and blue stars are
angular intershell displacements (Tβ).

was found previously by Drocco et al [5] where for the
configuration (1, 6, 6) the melting temperature is that at which
radial exchange of particles between shells is observed while
rotation does not yet occur (see figure 6(b) in [5]). Another
reason for the different scenario might be the broadening of
one of the two inner rings and the fact that in both cases
the two inner rings consist of particles with the same type of

4
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Table 1. The ground state and metastable states for Coulomb
clusters consisting of N = 10 particles and with varying charge ratio
q = q1/q2 = 0.1–5.0; the columns contain energy E/N , �E/N ,
shell structure, radius and width of the rings. The energy is in units
of Eo and coordinates are in units of ro.

q E/N

�E/N
(Emetastable −
Egroundstate)/N Configuration

Radius of
the ring

Width of
the ring

0.1 1.494 12 — 5, 5 0.981 22 0
0.182 44 0

1.494 82 0.0007 1, 4, 5 0.001 03 0
0.204 83 0.000 32
0.981 32 0.000 92

0.4 2.501 07 — 5, 5 0.444 25 0
1.212 45 0

0.8 3.834 45 — 3, 2, 5 0.498 22 0.065 82
1.134 12 0
1.375 42 0.058 67

3.835 07 0.000 62 3, 2, 5 0.499 89 0.020 44
1.125 43 0
1.377 98 0.096 68

3.837 65 0.003 20 3, 2, 5 0.496 24 0.077 51
1.177 45 0.125 64
1.361 25 0.082 46

3.867 45 0.033 00 3, 2, 5 0.526 11 0.117 59
1.154 76 0.067 94
1.368 28 0.183 45

3.871 18 0.036 73 3, 2, 5 0.519 83 0.029 33
1.186 77 0.094 24
1.361 53 0.061 66

3.906 18 0.071 73 2, 3, 5 0.458 73 0.194 49
1.079 45 0.164 63
1.342 88 0.237 18

1.0 4.484 94 — 2, 8 0.426 49 0
1.348 79 0.176 77

4.488 16 0.003 22 3, 7 0.567 73 0.053 11
1.412 93 0.140 64

1.5 5.831 16 — 3, 2, 5 0.623 66 0.122 35
1.172 55 0
1.761 01 0.081 54

5.833 43 0.002 27 3, 2, 5 0.587 68 0.154 27
1.264 44 0
1.743 08 0.080 65

5.842 85 0.011 69 3, 2, 5 0.601 45 0.113 74
1.288 20 0.301 62
1.732 80 0.090 38

2.0 7.151 79 — 5, 5 0.817 60 0.163 50
2.023 69 0.020 37

7.166 21 0.014 42 1, 3, 1, 5 0.275 80 0
0.837 31 0.203 19
1.212 71 0
2.012 42 0.032 23

3.0 9.850 15 — 5, 5 0.820 30 0
2.427 73 0

5.0 15.632 69 — 5, 5 0.830 00 0
3.119 76 0

15.650 14 0.017 45 1, 4, 5 0.023 65 0
0.928 99 0.006 36
3.121 36 0.009 79

charge. Moreover, for q = 0.8 and 1.5 the shell configurations
are similar (3, 2, 5). Having this in mind, we have done

Figure 4. Angular intrashell and intershell melting temperatures
(according to the Lindemann criterion) of both rings versus the ratio
q of the charges. The temperatures are marked as follows: filled
green triangles (Tα1) refer to angular intrashell displacements for the
inner rings; half-filled green triangles (Tα2) refer to angular intrashell
displacements for the outer ring; blue stars are angular intershell
displacements (Tβ ).

calculations for three separate rings in those two cases, and
we noted that in both cases at first there is radial melting of the
inner rings, next angular inter- and intrashell melting of rings 1
and 2 and everything is followed by angular intrashell and later
also radial melting of ring number 3.

Following the work of Ferreira et al [12] we have
concentrated on melting properties in specific q intervals, with
characteristic ground state symmetries. The presence of perfect
ring-like structures and magic configurations (5, 5) in regions I
and III has been confirmed (figures 1(a)–(d) and 2(a) in [12]).
The sequences of melting steps are presented in table 2.

For q = 0.1 the sequence is as follows: 0 = Tβ = Tα1 <

TR1 = TR2 < Tα2. The rotations and angular intrashell melting
of the inner ring appear at any finite temperature. They are
followed by the radial melting of the rings, and the melting
process is completed with angular intrashell fluctuations of the
outer ring.

Excluding the cases of q = 0.1 and 1.0, we observe a clear
angular intershell melting temperature.

For the value q = 0.4, which belongs to region I, the
rotation occurs at a finite temperature, 0 < Tβ = Tα1 < TR1 <

TR2 < Tα2. For q = 2.0 and 3.0 (referring to region III in
Ferreira et al’s work [12]), first the angular intrashell melting of
the inner ring occurs together with intershell rotation, then the
inner ring melts radially, which is followed by radial melting of
the outer ring, and finally the outer ring loses the inner angular
order. The case q = 5.0 differs in the fact that rotation is
earlier than angular disorder of the inner ring. We can confirm
that region III is very similar to region I in the sense that first
rotations occur at the same temperature (or at a very similar
temperature for case of q = 5.0) as that at which the inner ring
loses angular order, and than one ring after another undergoes
radial melting and the whole process is accomplished with the
loss of angular order in the outer ring.

5
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Table 2. The q-dependent sequence of melting steps. TRx and Tαx are the radial and intrashell melting temperatures, respectively, x is the ring
number, where numbering starts from the center, and Tβxy is the intershell melting temperature of ring x with respect to ring y, where
Tβxy = Tβyx .)

q No. of rings Step no. 1 Step no. 2 Step no. 3 Step no. 4

0.1 2 0 = Tβ21 = Tα1 TR1 ≈ TR2 Tα2 —
0.4 2 Tβ21 = Tα1 TR1 TR2 Tα2

0.8 3 TR1 = TR2 Tα1 = Tα2 = Tβ13 = Tβ21 = Tβ32 Tα3 TR3

1.0 2 0 = Tβ12 = Tα1 TR1 = TR2 = Tα2 — —
1.5 3 TR1 = TR2 Tα1 = Tα2 = Tβ13 = Tβ21 = Tβ32 Tα3 TR3

2.0 2 Tβ21 = Tα1 TR1 TR2 Tα2

3.0 2 Tβ21 = Tα1 TR1 TR2 Tα2

5.0 2 Tβ21 < Tα1 TR1 TR2 Tα2

Table 3. A sample of our results for q = 3.0 in order to illustrate in
more detail the sequence of melting steps for the ground state. The
radial 〈u2

Rx 〉, intrashell 〈u2
αx 〉 (x is the ring number, x = 1 for the

inner ring, x = 2 for the outer one) and intershell 〈u2
β21〉

displacements are presented for appropriate temperatures at which
melting can be observed. Tm is the melting temperature according to
the Lindemann criterion. The considered temperatures were chosen
to be larger than the melting temperatures in order to ensure that the
system was clearly in the melted state.

T � Tm 〈u2
R1〉 〈u2

R2〉 〈u2
α1〉 〈u2

α2〉 〈u2
β21〉

0.035 0.056 0.018 2.436 0.006 1.996
0.066 0.108 0.033 2.542 0.010 2.064
0.264 0.249 0.139 2.493 0.040 2.107
0.355 0.305 0.189 2.473 0.452 2.130

Region II contains interesting cases of q = 0.8, 1.0, 1.5.
Note that q = 1.0 is a specific case where we recognize two-
step melting (as previously found in [8] for varying numbers
of particles N): at first the angular intrashell melting of the
inner ring and rotation occur and afterward radial melting of
both rings together with angular intrashell melting of the outer
ring. There is very low intershell rotation locking, resulting in a
reduced melting temperature (Tβ ), while we would expect this
to be larger in case of a magic configuration—it seems to be of
a similar order of magnitude to that for nine particles (which is
not a magic configuration). The reason for the specific scenario
in this case is not known to us.

But, q = 1.0 and 0.1 are particular exceptions (among the
investigated uniformly and non-uniformly charged particles)
in that at first around T = 0 the inner ring loses its angular
order (directly Tα1 is greater than 0.1). From symmetry, we
can expect that in the case of q ≈ 10.0 we will find rotation at
T = 0. The radial order of the rings is preserved together with
the angular intrashell order of the outer ring until the system
melts completely. The shell structure of N = 9 (2, 7) and 10
(2, 8) differs in the fact that for N = 9 two central particles
have different radial positions while for N = 10 they have the
same positions.

For q significantly different from 1, a new behavior is
found. Although intershell rotation occurs for T just above
T = 0, as for the uniform system, and the inner ring
loses angular intrashell order, the radial order of the rings
is preserved together with the angular intrashell order of the
outer ring. Increasing the temperature, first the inner shell
becomes unstable due to strong radial displacements, which

is demonstrated by the filled circles in figure 3. Afterward
the outer shell becomes smeared out as shown by the half-
filled circles, and finally the diffusion between shells destroys
the radial order. The melting process is completed when the
intrashell angular displacements of the outer ring overcome a
threshold (the upper curve denoted by the triangles in figure 4).
This four-step scenario is different from that in the uniform
limit [8] and is consistent with the findings of Drocco et al [5],
who defined two characteristic temperatures for the angular
and radial behavior; these were found to be different from each
other and the melting temperature was assumed to correspond
to the lower one in figure 3.

In all the cases intershell rotation is accomplished very
quickly, mostly with the loss of angular inner shell order of
the inner ring (figure 4) which is a q-independent feature.

Ferreira et al [19] were considering melting of the inner
ring for the case of N f = 7, Nv = 6, q = 3.0;: first they
found intershell rotation around 0.01, then angular intrashell
melting and radial melting at a similar temperature T = 0.02–
0.025. For our case N f = 5, Nv = 5, q = 3.0 we observe
intershell rotation around T = 0.017, which is similar. But
we observed a different behavior: for the inner ring we have
angular intrashell and intershell melting almost together at
T = 0.013, and radial melting of the inner ring at a much
higher temperature T = 0.06.

For the magic configuration (5, 5) there is rotation at finite
temperature, what is consistent with our previous work [8].
This is no longer the case for very large and very small q and
q = 1.0. For q = 0.1, 1.0, and q > 5.0 intershell rotation
occurs for T ≈ 0, due to the large difference in radii of the
rings.

4. Summary and conclusions

In conclusion, using the Monte Carlo algorithm of [2, 9],
we have determined the ground state and metastable
configurations which depend on q . Following our previous
MD approach we found a new dependence of the melting
temperature on the q ratio for small confined clusters of
charged particles [8].

Starting from the ground state configurations, we found
several interesting melting behaviors in the vicinity of q = 1.0
and for q significantly different from 1: the four-step melting
behavior, which for q significantly different from 1 starts from
the intershell rotation accompanied by the intrashell angular
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disorder of the inner ring, followed by radial melting of the
inner ring, and next radial melting of the outer ring, completed
with the intrashell angular disorder of the outer ring. For q-
values near q = 1.0 (for q = 0.8 and 1.5) we found another
scenario, due to the three ring configurations, in which at first
there is radial melting of the two inner rings, next angular inter-
and intrashell melting of those rings and everything is followed
by angular intrashell and later also radial melting of the outer
ring.
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